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By considering Brownian motion driven by a weak colored random force with dichotomous 
noise, neglecting inertial effects and assuming the stationary state, we obtained the pre- 
exponential factor for the reaction rate coefficient leading to the Kramers' turnover. It is found 
that the pre-exponential factor is proportional to the friction when it is small in comparison 
with the frequency characterizing the curvature of the potential top, and it is inversely propor- 
tional to the friction as it increases further after showing the maximum. This behavior is 
accounted for in terms of the cell model in liquids. 

1. Introduction 

Experimental  data  [1-3] show significant deviation f rom Eyring's expression 
for the pre-exponential  factor of  the rate coefficient. There are m a n y  theoretical  
a t tempts  [4-11] to explain the deviation. In liquids, when the rate coefficient k is 
plot ted against the friction by keeping the temperature constant,  it is found [3] that  
there is a max imum in k. This phenomenon where k increases as the friction 
increases, reaches a maximum, and starts decreasing as the friction increases 
fur ther  is called Kramers '  turnover. Recently the present au thor  [12] improved 
Kramers '  theory by taking into account inertial effects and the mot ion  near  the 
potential  min imum and assuming that  the random force is driven by the white 
noise. It is found that  there is a lower limit for the friction to mainta in  the s ta t ionary 
state and at a certain parameter  region, Kramers '  turnover  can be indeed possible. 

In this paper, we shall investigate how the correlation of  collisions m a y  affect 
the rate process. To this end, we shall take into account  effects due to collisions aris- 
ing f rom colored noise. For  the sake of simplicity, however,  we have ignored iner- 
tial effects, which is equivalent to the assumption that  the velocity distribution is 
almost  in equilibrium at all time, and it must be true at a large time scale. Hence, we 
assume that  the Brownian mot ion is driven by a weak colored r andom force with 
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dichotomous noise and we require that the equilibrium distribution function 
should be given by the Maxwell-Boltzmann factor. In developing the theory, we 
introduce the stationary state and it will be shown how the Kramers'  turnover may 
be explained simply. Our final result shows that when the friction,/3 is small, k is 
proportional to/3 and for large/3, k becomes inversely proportional to r ,  following 
a maximum. The physical signature of the weak dichotomous random force results 
from a model that a solute molecule sits in the center of a cell which is formed 
from surrounding molecules. This formation of the cell becomes significant in the 
low friction medium which takes into account an oscillation-like motion of the 
solute molecules that cannot be effected by the random force with white noise. And 
this motion is responsible for the drop of k as the decrease of/3. But in the viscous 
media, the small motion inside the cell is no longer significant and the dynamics is 
dominated by the translational diffusion of the cell as a whole, whose collision pro- 
cess may be approximately described by the white-noise random force. This limit 
indeed corresponds to the result given by Kramers. 

2. Theory  and discussion 

We start with the following stochastic differential equation: 

m/3% ( t )  -- F(x) + A(t), (1) 

where m is the mass of the Brownian particle,/3 is the friction constant, F(x) is the 
external force that can be expressed in terms of the potential V(x) by the relation 

dr(x) 
V(x) -- dx 

and ),(t) is the random force. We assume that A(t) is dichotomous noise or a 
random square wave which is governed by the Poisson process and satisfies the 
relations 

and 

<A(t)> = 0 (2) 

<A(tx)A(t2)> = E 2 exp(-27[tl - t2[), (3) 

in which 3' is the average frequency of A(t) changing from the value of E (or - E )  
to - E  (or E). (See refs. [12-14] for detailed description of the dichotomous noise.) 
We should point out that we do not use the generalized Langevin equation, which 
is shown to have serious difficulties in connection with fundamental properties of 
statistical mechanics [15]. It should be noted that in the limit o f E  2 --~ oo and 7 ~ co 
by keeping E2/27 constant, 
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• E 2 E 2 
(A(q)A(t2)) = l i r n  ~ [ 2 7 e x p ( - 2 7 1 q -  t2l)] = ~-~7 6 ( t l -  t2), (4) 

which is precisely the case of the well-known white noise where eq. (1) leads to the 
Smoluchowski equation. We can write the Fokker-Planck equation for eq. (1) in 
the following form [16]: 

Op+ (x, t) 0 
Ot Ox [ f (x)+c]p+(x ' t ) - 'yp+(x ' t )+7p-(x ' t ) '  (5) 

Op_ (x, t) 0 
Ot - ~xx[ f (x) -c]p_(x , t ) -Tp-(x , t )  +Tp+(x,t),  (6) 

wherep+ (x, t)dx andp_ (x, t)dx represent the probability to find a particle with tak- 
ing c and -c ,  respectively, in which 

E F(x) 
C=m/3 and f ( x ) =  m---~" 

On defining the functions 

P(x,t) =p+(x,t) +p_(x,t)  a n d Q ( x , t ) = p + ( x , t ) - p _ ( x , t ) ,  

we find from eqs. (5)-(6) that 

OP(x, t) 0 
Ot - Ox[f(x)P(x' t) + cQ(x, t)], (7) 

OQ(x, t) o 
- [f(x)Q(x,t) + cP(x,t)]- 2"rQ(x,t). (8) 

Ot Ox 
If we regard eq. (7) as the equation of continuity, we see that the flux J(x, t) is given 
by 

J(x, t) = f(x)P(x,  t) + cQ(x, t) . (9) 

Following Kramers, we assume the potential barrier is so high that only very few 
particles can cross over the barrier top, which enables us to introduce the stationary 
state• In view of this assumption together with eqs. (7)-(9), we find the following 
relation between P(x) and J: 

[c 2 _ /2 (x)  ] dP(x) _ 2f(x)[f'(x) + 7]e(x) - [23' +f'(x)]J (10) 
dx 

Here it should be noted that since [OP(x)/Ot] = 0 on the left-hand side of eq. (7) 
and in view ofeq. (9), J in eq. (10) does not depend on both t and x. It follows from 
eq. (10) that the white noise limit corresponding to the case of 7 + oo and c-+ oo 
for a given/3 leads to the following differential equation: 

c2 dP(x) _ 27f(x)e(x) _ 27 J (11) 
dx 
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which is nothing but the result from the Smoluchowski equation, if we regard 
c 2/2")' as the diffusion coefficient. In other words, eq. (11) reveals that the flux J con- 
sists of the thermal diffusion term, (c2/27)[dP(x)/dx] and the forced field term, 
f(x)P(x). In fact, by substituting J in eq. (11) in the continuity equation, we find the 
Smoluchowski equation. 

The differential equation (10) may be written in the following form: 
d x 

{P(x) exp[- f ~(x/) dx I] } =  exp [ -  fX~(xl)dx' 1 ~(x)J, (12) 

where 

f(x) g'(x) - 2f(x)f'(x) + (13) 
ca - f 2 ( x )  27c2-f2(x) '  

23  ̀+ f ' (x)  
• (x)-- c2_f2(x) 14) 

It follows immediately that 

f x = + 23`kV(x), 15) kV(x') d £  ~ln[c 2 ~ f 2 ~x~ ] 

where 

x f (x') d~ 
g/(x) = c2 _/2(x~ ) . 

Then we see that eq. (12) can be written in the form 

d -~ {P(x)[c 2 - f2(x)]e-Z"/~'(x)} = -[23' + f '  (x)]e -2~(x) J .  16) 

At this stage, it would be worthwhile introducing the fluctuation dissipation theo- 
rem for the present dichotomous colored noise. We require that at the equilibrium 
state where J must be zero, P(x) should be the Maxwell-Boltzmann distribution 
function. Equation (16) gives rise to 

e27~(x) 
Pen(X) = No2 _f2(x)  , (17) 

where N is an integration constant. As Pen(X) in eq. (17) is far from the Maxwell- 
Boltzmann function, if we assume 

c 2 >>/2(x) ,  (18) 

we find that 

N [ 2 3 `  V(x)l , (19) 
Peq (X) ~ ~-~ exp mflc2 

which indeed leads to the Maxwell-Boltzmann distribution with the relations 
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23 '_  m/3 1 
C 2 kB T - D ' (20) 

where D is the diffusion coefficient. Equation (20) shows how fluctuation 27/c 2 is 
related to the dissipation/3. In order to avoid confusion, we emphasize here the dif- 
ference between the stationary, J # 0, and equilibrium, J = 0, cases. The former 
is valid for an open system where a constant number of particles per unit time must 
be injected to the system from an outside source whereas the latter is for a dosed 
system where the total number of particles is conserved within the system. For this 
reason, the stationary system is more general than the equilibrium case. And for 
both systems, eq. (10) must be valid with space independent flux J which arises 
from the continuity equation. 

Under the assumption in (18), eq. (16) can be written as 

d (c2P(x)exp[V(x)] v(x) 

It should be pointed out that the only difference from the Kramers'  differential 
equation in eq. (11) is the existence of the second term in the square brackets on the 
right-hand side of eq. (22). This difference from the white noise is not significant 
when/3 is large, but it plays an important role as/3 becomes small, which will be 
shown below. 

The integration of both sides of eq. (22) from x = 0 to x = xB (see fig. 1, where 

A 

Fig. 1. Sketch of the potential V(x). 
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x = 0, xB and xc are the positions of the potential minimum of the reactant, the pro- 
duct and the potential top, respectively), by remembering that J is independent of 
x leads to the following relation: 

J 1 

[ P(O) L x~ m/3 _.l_f'(x)] exprV(x)] <~ 
k -~  c 2 J [kBrJ 

(23) 

where we have assumed P(0)>> P(xB). The rest of the procedures is identical to 
that taken by Kramers. As we see that the significant contribution to the denomina- 
tor on the right-hand side ofeq. (23) comes from V(x) near the potential top where 
x = xc, by expressing V(x) in the form 

V(x) = Vo - l  mw2c(X- xc)2. . .  (24) 

we find that 

J 1 
- - m / 3  ~ mW~u2 ] exp [ -  kB--~] . (25) 
P(O) ~ [~aT+S~Cc2] fooexpl-2kaT j d u  

The number of particles, u, near the potential bottom at x = 0 may be calculated 
approximately by using the Maxwell-Boltzmann distribution function [4] 

F u =  ~exp  - 2 k a T  j d x "  (26) 

Therefore it follows that the rate coefficient k is given by 

k _  J _  WAW______~C 1 exp [------]  (27) 
u 2re ~+ksTo.~ c l  L kBTJ 

meEt3 

This is our final result. 
Now, let us consider the physical meaning of c 2. The starting equation (1) 

enables us to write 

v+ = f ( x )  + c, (28a) 

u_ = f ( x )  - c, (28b) 

where u+ and u_ are the velocities for a Brownian particle when E and - E  are 
put, respectively. These equations give 

V +  - -  L t _  
c - - - - ~ - -  (29) 

Because of (18), u+ >0 and u_ <0, which enables us to interpret c as the time- 
independent mean velocity that also does not depend on f(x). Since we have 
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neglected inertia effects in eq. (1), the distribution of the velocity of the Brownian 
particle as the function of time is not considered just as the case in deriving the Smo- 
luchowski equation. However, we have assumed that the time scale is so large that 
the velocity is distributed according to the equilibrium Maxwell-Boltzmann distri- 
bution law from which the mean square velocity is kB Tim. This suggests that 

d - kB r (30) 
m 

This is the relation we were looking for. We see from eqs. (18), (24) and (30) that 
in the region near the potential top, (kBr/m) > >  (w4(x - xc)2/ /3  2) must be true 
even for small/3. The mean square velocity is determined from the temperature and 
the mass of the Brownian particle whereas/3 represents the strength of the coupling 
between the particle and the solvent medium. The smaller/3 becomes, the closer 
the system is to the case where the particle is put in the vacuum in which the particle 
undergoes the deterministic motion. In this limit, the particle must take the saddle 
point to go over the potential top where the velocity becomes extremely small, 
which suggests that even for small/3 the above condition still satisfies. 

Substitution ofeq. (30) in eq. (20) gives 

2 7 =/3.  (31) 

On putting eq. (30) in eq. (27), we have 

k = Wi2rc - - / 3  ql wC exp[-- ~ . (32) 

wc /3 

It is evident from eq. (32) that the pre-exponential factor for k is proportional to/3 
when/3 << coc, and inversely proportional to/3 when/3 >> wc after it reaches the 
maximum at/3 = wc. This behavior of the pre-exponential factor is regarded as 
Kramers's turnover. In fig. 2, the experimental data by Fleming and Wolynes [3] 
are compared with the theoretical curve in eq. (32). The difference in k of eq. (32) 
from Kramers' expression for large/3 is the second term in the denominator on the 
right-hand side of eq. (32), which arises from effects of the colored noise together 
withf ' (x) .  Since we have ignored inertial effects, there must be a lower limit for/3 
whose physical origin is different from that in the previous study [12]. When/3 is 
relatively small, the reaction is induced by collisions, whereas as/3 becomes suffi- 
ciently large, collisions decrease the chance for the Brownian particle to cross over 
the barrier top. The drop of k in the small region of/3 may be accounted for by intro- 
ducing a cell model for liquids where the solute molecule is surrounded by the sol- 
vent molecules which form the cell. In this region, the random force is correlated by 
the oscillation-like motion of the solute molecule inside the cell which leads to the 
collision by the colored random force. 
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Fig. 2. A plot o f k  in eq. (32) vs. friction ft. The experimental points of Fleming and Wolynes [3] for 
the rotational isomers ofstilbene is fitted to agree with the theoretical curve. 

Acknowledgements 

A Grant-in-Aid for Scientific Research on Priority Area: "Molecular 
Approaches to Non-equilibrium Processes in Solutions", from the Ministry of 
Education, Science and Culture, Japan (~- 03231102) is gratefully acknowledged. 

References 

[1] D. Hasha, T. Eguchi and J. Jonas, J. Am. Chem. Soc. 104 (1982) 2290. 
[2] S.H. Courtney and G.R. Fleming, J. Chem. Phys. 83 (1985) 215. 
[3] G.R. Fleming and P.G. Wolynes, Phys. Today 43 (1990) 2715. 
[4] H.A. Kramers, Physica 7 (1940) 284, also see review article by S. Chandrasekhar, Rev. Mod. 

Phys. 15 (1943) 1. 
[5] J.L. Skinner and P.G. Wolynes, J. Chem. Phys. 69 (1978) 2143. 
[6] R.S. Larson and M.D. Kostin, J. Chem. Phys. 72 (1980) 1392. 
[7] R. Grote and J.T. Hynes, J. Chem. Phys. 73 (1980) 2715. 
[8] J.L. Skinner and P.G. Wolynes, Physica A96 (1979) 561. 
[9] J.L. Skinner and P.G. Wolynes, J. Chem. Phys. 72 (1980) 4913. 

[10] G. Tarjus and D. Kivelson, Chem. Phys. 152 (1991) 153. 
[11] F. Patron and S.A. Adelman, Chem. Phys. 152 (1991) 121. 
[12] A. Morita, J. Chem. Phys. 96 (1992) 3678. 
[13] A. Morita, Phys. Rev. A41 (1990) 754. 
[14] A. Morita, J. Chem. Phys. 92 (1990) 2401. 
[15] A. Morita, to be published. 
[16] W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984). 


